Implementation of K-Means Clustering for Analysis Students English Proficiency
Main Article Content
Abstract
English is one of the international languages. Language is a communication tool that is carried out orally or in writing. English proficiency is not only the ability to speak, but also the ability to understand and produce spoken or written texts which are realized in the four language skills namely listening, speaking, reading and writing. With the existence of data mining technology, an analysis of students' English skills can be carried out. This analysis was carried out by grouping students according to ability scores in these empathy skills. In conducting this research, the K-Means clustering method was used to classify students' English skills. With the K-Means clustering technique, it is hoped that the teacher can adjust the learning model according to the students' abilities. Based on the grouping results, the grouping with 3 clusters is the most optimal grouping result with the smallest Davies Bouldin Index (DBI) value, namely 0.365. The application of the K-Means method in grouping student data based on English proficiency scores can produce 3 groups of students who are smart, moderate, and moderate.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Adhitama, R., Burhanuddin, A., & Ananda, R. (2020). Penentuan Jumlah Cluster Ideal Smk Di Jawa Tengah Dengan Metode X-Means Clustering Dan K-Means Clusterin. JIKO (Jurnal Informatika Dan Komputer), 3(1), 1–5. https://doi.org/10.33387/jiko.v3i1.1635
Agustina, S., Yhudo, D., Santoso, H., Marnasusanto, N., Tirtana, A., & Khusnu, F. (2012). Clustering Kualitas Beras Berdasarkan Ciri Fisik Menggunakan Metode K-Means. Clustering K-Means, 1–7.
Budiarso, I. (2017). Analisis Kemampuan Keterampilan Berbicara Bahasa Inggris terhadap Kinerja Karyawan PT Berrys Internasional Jakarta. JABE (Journal of Applied Business and Economic), 3(1), 1. https://doi.org/10.30998/jabe.v3i1.1752
Farahdinna, F., Nurdiansyah, I., Suryani, A., & Wibowo, A. (2019). Perbandingan Algoritma K-Means Dan K-Medoids Dalam Klasterisasi Produk Asuransi Perusahaan Nasional. Jurnal Ilmiah FIFO, 11(2), 208. https://doi.org/10.22441/fifo.2019.v11i2.010
Hermansyah, M., Hamdan, R. A., Sidik, F., & Wibowo, A. (2020). Klasterisasi Data Travel Umroh di Marketplace Umroh.com Menggunakan Metode K-Means. Jurnal Ilmu Komputer, 13(2), 8. https://doi.org/10.24843/jik.2020.v13.i02.p06
Lase, Y., & Panggabean, E. (2019). Implementasi Metode K-Means Clustering Dalam Sistem Pemilihan Jurusan Di SMK Swasta Harapan Baru. JUTIKOMP : Jurnal Teknologi Dan Ilmu Komputer Prima, 2(2), 375–379.
Rohmawati, N., Defiyanti, S., & Jajuli, M. (2015). Implementasi Algoritma K-Means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jitter : Jurnal Ilmiah Teknologi Informasi Terapan, I(2), 62–68.
Silalahi, M., Purba, A., Benarita, B., Matondang, M. K. ., Sipayung, R. W., Silalahi, T. F., Saragih, N., Girsang, S. E., Damanik, I. J., & Sibuea, B. (2022). Analisis Kesulitan Belajar Bahasa Inggris Siswa Sma Negeri 1 Narumonda Kabupaten Tobasa. Community Development Journal : Jurnal Pengabdian Masyarakat, 3(2), 728–732. https://doi.org/10.31004/cdj.v3i2.4686
Tambusai, A., & Nasution, K. (2022). Tingkat Pemahaman Bahasa Inggris Bagi Siswa Sekolah Menegah Atas (SMA). Jurnal Pema Tarbiyah, 1(1), 44–53.